S&M version 1.8.1 was used to monitor the temperature of the Intel Core 2 Duo E6300, but the CPU was heated up by running the Intel Thermal Analysis Tool:
This test was frying the CPU for 20 minutes.
I also selected 100% load for both CPU cores.
This utility proved to heat the Core 2 Duo up harder than S&M does as the following diagrams show (the Intel Core 2 Duo E6300 was overclocked to 3430MHz with a voltage increase to 1.4875V):
S&M, FPU Test 100%, 15 min
TAT, Dual Core Load 100%, 20 min
You can note that the Intel Thermal Analysis Tool makes the CPU hotter by 9ò¾ in comparison with S&M 1.8.1.
As for monitoring, S&M would show a 1.5ò¾ lower temperature than the Intel Thermal Analysis Tool did in idle mode, but their readings would become identical when the CPU was under load.
Considering that the Intel Thermal Analysis Tool creates a CPU load quite untypical for ordinary applications, I also simulated a Game test mode by running 3DMark06£r Firefly Forest test with 16x anisotropic filtering and without full-screen antialiasing for 19 times.
The temperature was read from the sensor integrated into the CPU. The mainboards?automatic fan speed management was disabled for the time of the tests. The thermal throttling of the Intel Core 2 Duo processor was controlled with RightMark CPU Clock Utility version 2.15. My sample of the processor would begin to skip clock cycles (throttling mode) after reaching a temperature of 81.5ò¾
At least two test cycles were performed for each cooler in each test mode. I waited for 25-30 minutes for the temperature to stabilize during each test cycle. The stabilization period was two times shorter on an open testbed. The maximum temperature in the two test cycles was considered as the final result (if the difference was not bigger than 1ò¾). Despite the stabilization period, the results of the second test cycle were generally higher by 0.5-1ò¾
The ambient temperature was monitored by means of an electric thermometer and remained at 22.0-22.5ò¾.